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ordinates code ANISN has been adapted to
lectroms. Calculated results obtained

with ANISE are compared with experimental data "cr the treasmitted electrom
. energy and angular distridutiums for )-seV ele~trono normally incideat on

alumiouws slabs of several thickassses

The calculated anc experimeatal

Fesults to date are in goos Sgr=Tent for a thin slad (0.2 of the electron

n)ummummsu

for thicker slads (0.6 of the electron

range). Calculated results obtained with ANISS are also compared vith cal-
tulated results obtaimed Wiy Mcate Cuvlo methods.

INTRODUCTION

hw.fl--r-(d'mcbrofn
u--ﬂomm-‘-twubmu
mmd—"‘kmum
through the Van Allen electron belt. A code that
me-—dh&c‘rlo-«b—
‘u“lﬂ(m.l’.mmo{mm
MMM‘!AC&&M.‘&I“
m..mlmmmu:mx- is
needed hnunu-u.mmuam
m-&-mumu-'undlu-
taergy electrons. e arthod of calculstion is
wum—mmxn.-ﬂmmuc

It are pgre od and compared with experi-
—nmu-mmmum
last section.

METHCD OF CALSVLATION

Is priscigle, tae Slscrete crdisstes code
ANISS (ver. :)-u-—aum.l«u—.
bty the sisple expedicmt af istroducing iato the
cofe the differestial cross sectioms for electron-
sucleus elastic collistons, electron-sucleus brems-
streblung-profucing collisions, and electron-
electron colilsions. I practice, however, these
CFONS secticns are quite S1fferest from those which
Scowr is seutros transport vhere the sethod of dis-
trete prdisates has been wwed extensively, end tae

TRie vort was funded by the Sational Aeromsstics
aad fpace Admisistretion, Order 5380004, under
Union Cartide Corporetion‘’s comtrect wvith the

J. 5. penic Energ Commission.

aethod has shown only partia. success in transport-
ing electroms.

In the Momte Carlo treataent of electrom trans-
port, the iadividual electromic collisions are not
considered. but rether the theories of multiple
Coulomd scattering and comtinuous slowing dox. are
used to grow; together large numbers of collisions
(ref. 1). In the work reported here, the individ-
wal electromic collisioms &re treated except tha®
those electrom-electron collisions which result in
very small emergy traasfers (of the order of the
Sverage iomization potestial of the atom) are
trested using the continuocus slov.ng-down spproxi-
sation. The equation solved is the oltzmann trans-
port eguation with o continuous slowing-down term
added

S-vo(f,2,3) « p(£.2.2)
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of the purticle;
So.u:wumnneu-
d‘“w;
---d--f.un-.h;
l-ﬁm—'d-m;
MJJ)O&.&“I’---A!—:’;
l.-ﬁmm-.e.-
sidered;
l'&.‘e-'hlva
H‘M)-ﬁ—-d’m"mt
energy per steradian per unit
volume foput ot B from an ex-
3 tersal sowrce;

oo (s 2.8 -8
—‘-——0 th: differestial cross section

for an electron (2°) gotng 1a
Gtrectioe 3 to 1 atergo elastic
suclear scattering (Coulomd scut-
tering) to (2.8);

e (2 2.5 -8)
-k‘—-—- the differectial cross section

for an electren (2°.8°) to under-
6° Wremsstrablung (redietive)
scattering with both mucle! and
stamic electroms to (2.3);

e, e g 5.0
—“n—— ® the differestial cross sectios

for an electros (2°,5°) to under-
€c iselastic scettering from
stomic electroms to (2.3), ther.
by producing e secondms~ electrea
vith esergy E°-E;

1° © an ertitrary value tehes to be

. the misimum energ icss allowed

ia an inelastic electrom-
electron collision;

S(E) = the Stopping pover (emergy loss
Per unit path length) due to in-
elastic election-eiectron col-
lisions resulting in an energy
loss smaller than I' (these col-
lisions are presumed to be
straightadead).

The differential cross Sections for electrom-
sucleus elastic collisions end electron-nucleus or
electron-electron .-n.nn~ production are
taken from standard sources (refs. JteS). e
differential cross section Giver by Moller (refs.
3, 6) is used to descride electron-electron colli-
sions which result in large energy transfers (2 1°).
&mn-.“mm«olo«m—dm
collisions resulting in small energy transfers
(< I') 1s odtained un---rmu-an
Robrlich and Carlson (ref. 7) wita the density ef-
fect correction takes from Sternheimer (refs. 8, y).
h-l'nl--dhthe.nrwmu
0.0163 MeV, i.e., 100 = x-nxumm
ionization potential for aluminum, 163 ev (ref. 8).

RESULTS AND DISCUSSION

Goudsmit and Ssundersom have obtained an ane-
Iytic expression for the angular distridution of
transmitted electroms when Sonoenergetic electroms
are sormally incident on sufficiently thin siads so
thtthmr.“iudmcucumwu
seglected (ref. 10). Using the Goudsmit-Ssunderson
theory, Berger obtained the angular distridution of
the transmitted electrons resulting from l-MeV elec-
trons sormally incidest on an aluminum slad of thick-
808 0.0287 g/ca? (ref. 11). The transmitted angu-
l-emdchctmcutumubymru
Fepresented by the histogrem showm in figure 1. Also
.-utuﬂmmmmuxu obtained for

this same case with the dlscrete ordinates code ARISN.

In the ANISH calculation, one energy group with o
range from 1.0106 MeV to 0.9834 MeV and o midpoint
of 1.0 MeV were used. 5o energy degradation vas
alloved and only elastic Scattering wa. permitted;
t.e., 1a taie calculation equation 1 with ah - ’br =
S(E) » 0 vas solved. The two calculations showm in
ﬂ-‘lmnmumm.-lmuu-
Sethod of discrete ordinates can handle satisfac-
torily small-angle sultiple Coulomd scattering.

Rester and Rainwater (ref. 12) and Rester and
Dance (ref. 13) nave ®easured the transmitted elec-
tron curreat per unit energy from momceaergetic
electrons normally incident on aluminum slabs of
varying thicknesses. The solid histograms in fig-
ures 2, ).-nia-mmu-mcm
electron curreat Per unit emergy for aluminum slabs
of thicknesses of 0.11 g/ca?, 0.22 g/cn?, and
0.33 g/ca?, respectively. Also shewn in the fig-
mmemmmumuum-
(114 curves) and calculated results obtained with
tamwlotmme*mdwm
Seltzer (ref. 1). 1Ia figure 2, the agreement be-
twveen the ANISN results and the experimental data
t-mmwucnmuwt-mn.
and in this case, i.e., for a 0.11-g/em?-thick slad,
mnn-nuxumnuwmmm
-;ummmmummluum
by ETRAN. In figure 3, Beither ANISN nor ETRAN is
u“munt&owmm. In
figure &, which shows results for a relatively
thick slad, 0.33 g/en? (0.6 of the electrom range),
the Monte Carlo caiculation is in very good agree-
Sent with the sxperimental data, wvhile the ANISN
wx-uuw’uw”. The reason
for the progressive failure of the continuocus
-mmw:uummm in-
creases is not known.

The calculated and measured transmitted elec-
lmwprmtmm-‘mmtnu‘
nnuuuha-nﬂ.-niu.h-euo-ol.org
8t several angles for a 0.11-g/cm?-thick aluminum
slab. The calculated results agree fairly well
vith the experimental data at all angles, thus in-
dicating an acceptadle energy-angle correlation.

Because of the lack of exper.mental data, it
Vas not possidle to present a comparison between
calculation and experiment for the case of an elec-
tron spectrum incident on a slab. Using the Monte
Carlo code ETRAN of Berger and Seltzer (ref. 1),
Scott (ref. 14) calculated the transmitted electron
current rer unit emergy for the case of a specific
electron energ’ Spectrum normally incident om alu-
minum slabs, and this theoreticali calculation was
compared with results obtained with ANISN. The
incident electron energy distridution used in the
calculations is a representation of the spectrus
resulting from thermal neutron capture in 23%

(ref. 15). This Spectrum extends to electron

“dndtha‘erothlﬂnndhlhmn-
plicitly in reference 1k.

The ETRAN results for an aluminum slad 0.5 g/
u‘nxammxnrmsn-u.mm
the ANISN results are shown as plotted points. A
similar comparison is given in figure 7 for an
sluminum slad 1.0 g/cm? thick. In both figures 6
au'rmmmuxumuumxnm-y.ou
Ggreement. Thus, ANISN is Spparently capable of
treating eccurately the transport of low-energy
(< 10 MeV) electrons through relatively thick
shields in some cases, e.g., the cases considered
in figures 6 and 7, but not in all cases, e.g.,
figures 3 and 4.

’ ———
|
-— +
CJ
0
L
T
o'
3 >
s
* — 5
3 .
g w0? +
= —
-~
===
H I '
§ Eﬁ\_,_‘_*__
- -3 |
0 — - —
===
Pt
)¢ S 120
1

FIGURE 1.- Angular distridbution of transmitted
electron current for 1-MeV electrons normally
incidert on a 0.0287-g/cm-thick aluminum slab.
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